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The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam
and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere
has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex
on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scin-
tillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of
vortex beams has been calculated only for the simplest LG1

0 mode, the obtained results are quite general, because
they demonstrate the main properties inherent in scintillations of vortex beams of any type. © 2015 Chinese
Laser Press
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Laser beams having the orbital angular momentum (OAM)
[1–3] attract recently great attention owing to their particular
properties, which have found numerous applications [4–6].
Due to the presence of the transverse circulation component
of the Pointing vector [1], such beams are referred to as
optical vortices. In particular, the possibility of using optical
vortices for information coding and transmission is studied
intensely [7,8]. For optical communication systems, it is
necessary to study the influence of a medium on the optical
vortex propagation. It is known that the medium through
which the beam propagates distorts the beam. Beam wander-
ing and fluctuations of the beam intensity are the main factors
restricting the data throughput of optical systems for data
transmission along horizontal and slant paths; in particular,
Earth–space paths. Intensity fluctuations of Gaussian laser
beams in the turbulent atmosphere are studied quite thor-
oughly now.

To describe fluctuation characteristics of these beams,
numerical and analytical methods have been developed [9].
A common feature of an optical vortex in the free space is that
the beam structure includes the helical phase distribution and
zero intensity at the beam axis [10]. For an analytical descrip-
tion of the propagation of laser beams under conditions of
weak atmospheric turbulence, the Rytov method is used most
often [9]. It was shown in [11,12] that the direct application of
the Rytov method for description of vortex beams gives rise to
serious problems, because the intensity at the axis of the beam
propagating in the undisturbed medium becomes zero. The
numerical simulation of laser beam propagation is usually
based on the Monte Carlo technique with the use of phase
screens [13]. However, the numerically calculated values of
intensity fluctuations of vortex beams do not allow us to judge
unambiguously the influence of the energy circulation in the
beam on the intensity fluctuations in the beam cross section.

Thus, it follows from the results of [14] that intensity fluc-
tuations in the Laguerre–Gaussian beam differ only slightly
from intensity fluctuations in the Gaussian beam. The similar
conclusion, except for some details, can also be drawn from
[15]. From [16,17], it follows that under conditions of weak
turbulence the intensity fluctuations of laser beam close to
the Laguerre–Gaussian one appear to be much stronger than
those of the Gaussian beam. In [18], the intensity fluctuations
of the vortex Bessel beam behave qualitatively in the same
manner as the fluctuations of the Bessel beam having no vor-
tex properties, but their scintillation index appears to be
higher. The results [14–18] were obtained with computational
grids having different dimensions and at the different number
of realizations used for the calculation of the scintillation
index. To draw an unambiguous conclusion about the depend-
ence of the scintillation level on the beam type, we perform
the numerical simulation of the propagation of different types
of beams: Gaussian beam, Laguerre–Gaussian beam LG1

0, and
doughnut hole (DH) beam in the turbulent atmosphere [19].
Then the numerical results are compared with the asymptotic
estimation of scintillation at the beam axis.

We use the following representation of the complex ampli-
tude of the field in the initial plane (z � 0)
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where fr;φ; zg are cylindrical coordinates, Φ is the total
energy flux, a is the initial radius of the Gaussian source,
and c is the speed of light. If we take p � 1 and l � 1, then
Eq. (1) describes the circular mode of the Laguerre–Gaussian
beam LG1

0. If p � 1 and l � 0, then Eq. (1) corresponds to the

44 Photon. Res. / Vol. 3, No. 2 / April 2015 V. P. Aksenov and V. V. Kolosov

2327-9125/15/020044-04 © 2015 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.3.000044


DH beam. If both p � 0 and l � 0, then the beam in the initial
plane takes the form of the Gaussian beam.

To develop the numerical model, we, as in [20,21], apply the
method of splitting by physical factors with separation of the
diffraction and refraction components of the parabolic wave
equation describing the propagation of optical radiation.
Diffraction is calculated with the use of the fast Fourier-
transform (FFT) algorithm at the two-dimensional 512 × 512
grid. All the transformations associated with refraction corre-
spond to the radiation propagation through a pseudorandom
phase screen, whose statistics satisfies the conditions of
atmospheric turbulence.

In the calculations, the spectrum Φn�κ� is taken in the
form [9]

Φn�κ⊥; 0� � 0.033C2
n
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where C2
n is the structure characteristic of the refractive in-

dex, κ0 � 2π∕M0, κa � 3.3∕m0, and m0 and M0 are the inner
and outer scales of atmospheric turbulence (respectively).

To obtain statistical characteristics of intensity fluctua-
tions, the Monte Carlo technique (statistical test method) is
used. The calculations for different types of the beams were
carried out for the same sample of 2400 random realizations of
the sets of phase screens. After calculation of the complex
amplitude of the field, the realization of the random field of
intensity I�j��r; z� � u�j��r; z�u�j���r; z� and the squared inten-
sity �I�j��r; z��2 at the end of the turbulent layer was calculated.
The relative variance of intensity fluctuations (scintillation
index) was calculated as

σ21�r; z� �
B1�r; z�
hI�r; z�i2 ; (3)

where

B1�r; z� � hI2�r; z�i − hI�r; z�i2; (4)

is the variance of the intensity fluctuations.
The angular brackets in Eqs. (3) and (4) denote the averag-

ing over realizations, which was calculated in the standard
way from the corresponding arrays of readings {I�j��r; z�,
�I�j��r; z��2, j � 1; 2;…; 2400}. It was assumed that the turbu-
lence at the path is statistically homogeneous �C2

n � const�.
The turbulence intensity was specified with the param-
eter β20 � 1.23C2

nk7∕6z11∕6.
The resultant dependences of the scintillation indices on

turbulent conditions of propagation and the longitudinal
coordinate of the observation point satisfying the condition
z∕zd � 1 (zd � ka2∕2 is the Rayleigh length) are shown in
Figs. 1 and 2. In Fig. 1, Curves 1–3 are the results of calculation
of the scintillation indices at the beam axes. Curve 1 describes
scintillations at the axis of the optical vortex (Laguerre–
Gaussian mode of the LG1

0 beam). Curve 2 is obtained for
the DH beam, while Curve 3 is obtained for the Gaussian
beam. Curve 4 is borrowed from [22] (Fig. 4.7) and corre-
sponds to the experimental results for the scintillation index
of the narrow collimated Gaussian beam. It follows from Fig. 1

that the behavior of the scintillation indices of the optical
vortex and the Gaussian beam in the zone of weak turbulence
differs principally.

The scintillation index of the optical vortex at the vortex
axis increases sharply from zero to the value approximately
equal to unity as the atmospheric turbulence “turns on,”
and then it increases smoothly at the further intensification
of turbulence. Scintillations of the Gaussian beam increase
smoothly from zero as the turbulence intensity increases.
Scintillations of the DH beam also smoothly increase from
zero, as those for the Gaussian beam.

Figure 2 shows the calculated scintillation indices in the
transverse plane. In Fig. 2, Curves 1 and 2 correspond to
the LG1

0 and DH beams, while Curve 3 is for the Gaussian
beam. The calculations has been performed for the conditions
of weak turbulence (β20 � 0.1) and z∕zd � 1. It follows from
Fig. 2 that scintillations of the optical vortex decrease down
to those in the Gaussian and DH beams at a scale approxi-
mately equal to the effective source radius a. Then, the
scintillation index demonstrates the approximately identical
qualitative behavior in the range σ2I �r; z� � 1 (Curve 4) at
the beam periphery and clear saturation to the level equal
to unity at r∕a ≫ 1. The saturation of scintillations to the unit
level seems to be more natural than the infinite increase of

Fig. 1. Scintillations at the axis of the optical vortex: Laguerre–
Gaussian beam LG1

0 (Curve 1), DH beam (Curve 2), Gaussian beam
(Curve 3), and experimental results for the scintillation index of
the narrow collimated Gaussian beam [22] (Curve 4). Outer scale
M0 � 20a, m0 � 0.08a.

Fig. 2. Scintillation indices of optical vortex: Laguerre–Gaussian LG1
0

beam (Curve 1), DH beam (Curve 2), and Gaussian beam (Curve 3) as
functions of the distance to the beam center; scintillation saturation
level (Curve 4). β20 � 0.1, z∕zd � 1. Outer scale M0 � 20a,
m0 � 0.08a.
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scintillations following from the estimates based on the Rytov
theory [9]. It should be noted that the earlier numerical
simulation of the Gaussian beam propagation [23] has also
demonstrated the saturation of σ2I �r; z� at the beam periphery.

For analytical estimation of the scintillation index [Eq. (3)],
we use the Kolmogorov spectrum [9]

Φn�κ⊥; 0� � 0.033C2
nκ

−11∕3
⊥ : (5)

The mean intensity at the axis of the optical vortex hI�0; z�i
can be estimated by using the rigorous solution for

Γ2�r1; r2; z� � hu�r1; z�u��r2; z�i; (6)

as per [24]. We use Condition (1), the parameters correspond-
ing to the optical vortex (l � 1, p � 1) and, considering
turbulence as weak (β20 ≪ 1), obtain for the main term of
the asymptotic series
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In the calculation of hI2�0; z�i, we take into account that

hI2�r; z�i � Γ4�r1; r2; r3; r4; z�
� hu�r1; z�u��r2; z�u�r3; z�u��r4; z�ir1�r2�r3�r4�r;

(8)

and use the asymptotically rigorous method of equation
solution for the first-order coherence function of the field
Γ4�r1; r2; r3; r4; z� in the limiting case of weak turbulence
[25]. It is to be recalled that this method assumes representa-
tion of Γ4�r4; z�, r4 � r4�r1; r2; r3; r4� through the Green’s
function G4�r4; t4; z; 0�

Γ4�r4; z� �
Z

Γ4�t4; 0�hG4�r4; t4; z; 0�idt4; (9)

and transition from the parabolic differential equation for
hG4�r4; t4; z; 0�i to the integral equation, which can be written
as a Neumann series

hG4�r4; t4; z; 0�i �
X∞
j�0

�−1�jhG4�r4; t4; z; 0�ij : (10)

The corresponding iteration series for Γ4�r4; z� has the form

Γ4�r4; z� �
X∞
j�0

�−1�jΓ4j�r4; z�: (11)

In the zone of weak turbulence, the equation corresponding
to the homogeneous medium [25] can be taken as
hG4�r4; t4; z; 0�i0. Then

Γ40�r4; z� � u0�r1; z�u�
0�r2; z�u0�r3; z�u�

0�r4; z�; (12)

where u0�r1; z� is the complex amplitude of the field in the
homogeneous medium at a distance z from the source. It is
obvious that Γ40�0; z� � 0 at the axis of the optical vortex.
The first iteration allows us to find that Γ41�0; z� � 0 as well,
so that

Γ4�0; z� �
X∞
j�2

�−1�jΓ4j�0; z�: (13)

Estimating Γ42�0; z�, we obtain

Γ42�0; z� ≅ 2hI�0; z�i2; (14)

where hI�0; z�i is described by Eq. (7).
With allowance for the terms of asymptotic series [Eq. (13)]

following the term Γ42�0; z�, we obtain

hI2�0; z�i ≅ 2hI�0; z�i2 � O�β60�; β20 ≪ 1: (15)

Then, according to Eqs. (3) and (15), we have the following
estimate for the scintillation index

σ2I �0; z� � 1� O�β20�; β20 ≪ 1: (16)

This estimate indicates the stepwise character of the in-
crease of scintillations in the optical vortex at intensification
of atmospheric turbulence and corresponds to the results of
σ2I �0; z� calculation in the numerical experiment (Curve 1 in
Figs. 1 and 2).

It should be emphasized that the stepwise form is used only
for the dependence of the relative variance of intensity fluc-
tuations of vortex beam (scintillation index) on the intensity
of atmospheric turbulence. This dependence is determined by
the fact that as the turbulence intensity tends to zero, both the
mean squared intensity, the variance of fluctuations [Eq. (4)],
and the squared mean intensity tend to zero by the same (with
the framework of the considered approximations) law.

It should be noted that the characteristic σI�0; z� can be
considered as a speckle contrast [26], and fulfillment of the
condition σI�0; z� ≈ 1 is one of the signs of the fully developed
speckle field, which is formed in the cross section of the LG1

0
beam as a regular structure and occupies a random position in
the transverse plane due to random inhomogeneities of the
medium.

It is obvious that the approximate equality σI�0; z� ≈ 1 is a
consequence of the deep spatial modulation of the regular
distribution I0�r; z� provided by the presence of the zero-
intensity value. Actually, using the Michelson contrast [27]
equal to the ratio of the difference between the maximal
and minimal values of intensity in the beam cross section
to the sum of the maximal and minimal values, for estimation
of the depth of spatial modulation of the intensity field, we
obtain eth contrast equal to 1 (100%) owing to the fact that
I0�r; z� � 0. The 100% contrast will keep its value not only
for the beam in the homogeneous medium, but also in every
particular realization I�r; z� of the LG1

0 beam propagating in
the weakly turbulent atmosphere. Under these conditions,
the zero-intensity being, according to [28], a stable structure
keeps in the beam intensity distribution. It should be recalled
that when the condition β20 ≫ 1 is satisfied, we observe the
“mode of saturated scintillations,” which is characterized
by eth appearance of natural speckle structures (wave front
dislocations) [29,30]. It should be noted that the regular inten-
sity distribution of the DH beam also has the deep spatial
modulation in the plane z � 0. However, owing to diffraction,
the Michelson contrast for this beam decreases with the
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increase of the evolutionary variable z and becomes equal to
the corresponding value for the Gaussian beam [19].

Thus, we have performed the numerical and analytical
estimation of the scintillation index for the LG1

0, DH, and
Gaussian beams in the randomly inhomogeneous atmosphere.
It has been found that the scintillation index in the LG1

0 beam
increase stepwise from zero to unity at the turbulence devel-
opment at the path in contrast to scintillations of the two other
beams. This occurs owing to the initial deep spatial modula-
tion of the transverse intensity distribution, which becomes
random due to random inhomogeneities of the medium.
The dynamics of scintillations in the DH beam obeys the same
qualitative regularities as scintillations in the Gaussian beam
do [9]. The strong inhomogeneity of scintillations in the cross
section of the LG1

0 beam has been observed. It has been found
that at the beam periphery the scintillation index of all the
studied beams saturates to the unit level.

Despite the particular estimates of the scintillation index
have been obtained at the first stage for the simplest mode
of the Laguerre–Gaussian beam, we consider the obtained re-
sults as reference ones, because these results demonstrate the
main properties inherent in scintillations of vortex beams of
any type. Thus, Equality (13) is valid for vortex beams of any
type which means that significant terms of perturbation series
[Eq. (11)] are nonzero at the beam axis starting only from the
third iteration. The main conclusions of this work can be veri-
fied at the qualitative level under laboratory conditions with
the experimental setup described in [31] as a basis.
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